Tech At Bloomberg

Data Science Research Grant Program

The Bloomberg Data Science Grant Program is currently being revised. In the interim, please see our Ph.D. Fellowship or Postdoc Fellowship programs.

Previous grant recipients

Round 6 – June 2019

Unsupervised Abstractive News SummarizationMarti A. Hearst (University of California, Berkeley)

Data-Driven Transfer ClusteringMaria-Florina Balcan (Carnegie Mellon University)

Differentiable ranking lossesStefano Ermon (Stanford University)

An Adaptive Crowdsourcing System for Real-Time Domain AdaptationWalter Lasecki and Jonathan Kummerfeld (University of Michigan)

Extracting Spatial Timelines from TextEduardo Blanco (University of North Texas)

A Multi-task Model for Information Extraction and Entity-Centric Ranking tasksJeff Dalton (University of Glasgow)

Round 5 – July 2018

Neural Information Retrieval with Limited DataBruce Croft (University of Massachusetts Amherst)

Interactive Explorative Summarization: Closing the Summarization GapIdo Dagan (Bar Ilan University)

Representing Knowledge by Learning to LinkKevin Gimpel and Karl Stratos (Toyota Technological Institute [TTI] at Chicago)

Cost-effective Learning for Complex Crowdsourcing TasksXi Chen (NYU Stern School of Business)

Task Oriented Information Interaction Systems for Proactive Task Assistance SupportEmine Yilmaz (University College London)

Round 4 – April 2017

Combining structured knowledge and big data for coreference resolutionGreg Durrett (University of Texas – Austin)

Question answering and reasoning in multimodal dataHannaneh Hajishirzi (University of Washington)

Entity salience via sophisticated syntactic and semantic featuresPaolo Ferragina (Universita di Pisa, Italy)

Counterfactual learning with log dataThorsten Joachims (Cornell University)

Learning hidden semantics by machine reading using entailment graphsMark Steedman (University of Edinburgh)

Deep explanation learning for knowledge graph relationsMaarten de Rijke (University of Amsterdam)

Dynamic word embeddings and applications in analysis of real-world discoursesSimon PrestonKarthik BharathYves van Gennip (University of Nottingham) and Michaela Mahlberg (University of Birmingham)

Coarse-to-fine neural attention and generation with applications to document analysisAlexander Rush (Harvard University)

Round 3 – April 2016

Spectral Learning with Prior Information with Applications to Topic ModelsDaniel Hsu (Columbia University) and Kamalika Chaudhry (University of California, San Diego)

Dynamic Interpretability in Machine Learning,  Yisong Yue (California Institute of Technology)

Latent-Variable Spectral Learning Kernelization for NLP,  Shay Cohen (University of Edinburgh)

Online clustering of time-sensitive dataStephen Becker (University of Colorado at Boulder)

Character-level neural network sequence models for varied text named entity recognition,  Christopher Manning (Stanford University)

What’s The Angle? Disentangling Perspectives from Content in the NewsNoah Smith (University of Washington), Amber Boydstun (University of California, Davis), Philip Resnik (University of Maryland), Justin Gross (University of Massachusetts, Amherst)

Multimodal Event SummarizationMohit Bansal (TTI-Chicago, UNC-Chapel Hill)

Contextual Entity RecommendationMaarten de Rijke (University of Amsterdam)

Round 2 – October 2015

Deep Topic Models, Alexander Smola and Chris Dyer (Carnegie Mellon University)

Distributed Local Learning via Random Forests, Ameet Talwalkar (University of California at Los Angeles)

Establishing Trust in TweetsMark Dredze (Johns Hopkins University)

Report LinkingBenjamin Van Durme (Johns Hopkins University)

Coherent Multi-Document SummarizationDr. Mausam (Indian Institute of Technology Delhi)

Round 1 – April 2015

Scalable Probabilistic Deep LearningJinwoo Shin (KAIST, South Korea)

Algorithms for Offline, Online and Stochastic ClusteringViswanath Nagarajan (University of Michigan)

Latent-Variable Learning for Transition-Based ParsingShay Cohen, (University of Edinburgh) and Giorgio Satta, (University of Padua)

Areas of focus


Make it happen here.