Bloomberg the Company & Products

Bloomberg Anywhere Login

Bloomberg

Connecting decision makers to a dynamic network of information, people and ideas, Bloomberg quickly and accurately delivers business and financial information, news and insight around the world.

Company

Financial Products

Enterprise Products

Media

Customer Support

  • Americas

    +1 212 318 2000

  • Europe, Middle East, & Africa

    +44 20 7330 7500

  • Asia Pacific

    +65 6212 1000

Communications

Industry Products

Media Services

Follow Us

SAT Tips from Veritas Prep

SAT Tip: Rocking Right Triangles


SAT Tip: Rocking Right Triangles

Photograph by Don Mason

This tip on improving your SAT score was provided by Vivian Kerr at Veritas Prep.

If you read my earlier post on triangles, you’re now well acquainted with the triangle basics. Let’s look at how we can use our knowledge of special right triangles and the Pythagorean Theorem on SAT geometry questions.

Question 1. Which of the following could represent the side lengths of a right triangle with one angle measuring 30 degrees?

A. 5, 5, 10

B.  5, 5, 5√2

C. 5, 5√2, 5√2

D. 5, 5√2, 5√3

E. 5, 5√3, 10

Since we’re told the triangle is “right,” then one angle is 90 degrees. If one of the other angles is 30 degrees, we’re looking at a 30-60-90 special right triangle. We know that the ratio of a 30-60-90 triangle is x: x√3 : 2x, so the correct answer must have sides in that ratio. Here, x = 5 and the answer is E because it is the only answer choice with the correct ratios of side lengths.

Now let’s look at an example with the 45-45-90 triangle:

Question 2. Which of the following sets of three numbers could be the sides of a right triangle containing a 45 degree angle?

A 1, 1, 1

B 1, 21/2, 21/2

C 2, 2, 2(21/2)

D 1, 21/2, 31/2

E 1, 31/2, 2

This question steps it up a notch by requiring us to know our 45-45-90 side ratio and our exponent rules. Remember that a fractional exponent is just another way of expressing a root. An exponent of ½ is equal to the square root symbol, so 21/2 = √2.

We know the ratio for a 45-45-90 triangle is x: x: x√2, which means two of the sides must be equal. That eliminates D and E. Out of the remaining choices, only (C) correctly expresses the ratio, and it is the correct answer.

Question 3. The restroom in a restaurant is located 5 yards south and 3 yards east from the hostess stand, and Joe’s table is 2 yards north and 6 yards west of the hostess stand. Approximately how far is Joe from the restroom?

Start by drawing the restaurant, as described. We want to find the distance between Joe’s table and the restroom. We can draw a triangle so that this distance is the hypotenuse of a triangle.

The horizontal distance from Joe to the restroom is 6 + 3, so one leg of the triangle is 9. The vertical distance from Joe to the restroom is 2 + 5, so the other leg of the triangle is 7. Now that we know two legs of a right triangle, we can solve using the Pythagorean Theorem:

a2 + b2 = c2

72 + 92 = c2

49 + 81 = c2

130 = c2

11.4 ≈ c

The answer is 11 yards, approximately. This question didn’t use our Pythagorean triplets—common ratios for right triangles that will allow you to answer many questions like this one without using the Pythagorean Theorem. Still, remember the two most common ratios—3:4:5 and 5:12:13—and look out for them hiding in geometry questions on test day.

Plan on taking the SAT soon? Sign-up for a trial of Veritas Prep SAT 2400 on Demand.


LIMITED-TIME OFFER SUBSCRIBE NOW

SAT Practice Test

Veritas-prep-quiz-image

Veritas Prep SAT Diagnostic Quiz

Created for Bloomberg Businessweek readers, this diagnostic quiz is designed to measure your ability level with 25 realistic SAT questions. Click here to take the quiz and get instant feedback about your performance.

Last Updated: 07:16 pm Market Summary

S&P500 2117.69 4.76
DJIA 18080.14 21.45
NASDAQ 5092.085 36.022
Stoxx 50 3713.96 16.08
FTSE 100 7070.7 17.03
DAX 11810.85 87.27
Nikkei 20020.04 -167.61
Topix 1618.84 -6.03
Hang Seng 28060.98 233.28
 
blog comments powered by Disqus