UC Irvine and TowerJazz Present 9-Element Fully Integrated W-Band Direct-Detection-Based Receiver at Prestigious IC Design

  UC Irvine and TowerJazz Present 9-Element Fully Integrated W-Band
  Direct-Detection-Based Receiver at Prestigious IC Design Conference (ISSCC)

 Imaging receiver chip designed by UCI Labs and manufactured by TowerJazz is
       the most complex W-band imaging integrated circuit in the world

ISSCC 2014

Business Wire

NEWPORT BEACH & IRVINE, Calif. -- February 17, 2014

TowerJazz, the global specialty foundry leader, announced today that
researchers at the University of California, Irvine’s (UCI’s) Nanoscale
Communication Integrated Circuits (NCIC) Labs presented results from the
world’s most sophisticated integrated circuit at W-band (75-110GHz) comprising
a 9-element fully integrated direct-detection-based receiver (RX) array at the
IEEE International Solid-State Circuits Conference (ISSCC). ISSCC is arguably
the most prestigious IEEE technical forum (http://www.isscc.org) and has been
the largest technical forum where universities and high-tech companies present
the latest advances in integrated circuits design. The fully integrated
solution presented by NCIC was fabricated in TowerJazz’s advanced 0.18 µm SiGe
BiCMOS process.

W-band imaging systems have been traditionally designed and implemented in
compound semiconductors since the early 1990’s. These III-V imaging solutions
are typically in the form of multi-chip modules. The imaging receiver chip
designed by NCIC Labs and manufactured by TowerJazz is the most complex W-band
imaging integrated circuit in the world with the lowest noise temperature and
highest performance. The fully integrated receiver uses a new concept --
spatial-overlapping super-pixels -- for millimeter-wave (MMW) imaging
applications that is used for concealed weapon detection, airplane navigation
in low visibility conditions, and satellite surveillance.

The novel use of spatial-overlapping super-pixels results in: (1) improved
signal-to-noise-ratio at the pixel level, (2) the same pixel density as a
traditional focal plane array, (3) partially correlated adjacent super-pixels,
(4) a 2×2 window averaging function in the RF domain, (5) the ability to
compensate for the systematic phase delay and amplitude variations due to the
off-focal-point effect for antennas away from the focal point, (6) the ability
to compensate for mutual coupling effects among the array elements, and (7)
signal processing capabilities in the RF domain.

The receiver chip achieves a peak measured coherent responsivity of 1,150MV/W,
a measured incoherent responsivity of 1,000MV/W and a front-end 3-dB bandwidth
from 87-108GHz, while consuming 225mW per receiver element. The measured NETD
of the SiGe receiver chip is 0.45K with a 20ms integration time. Finally, the
imaging chip achieves lowest noise equivalent power (NEP) ever reported for
any imaging receiver at W-band. This record breaking performance means that if
commercialized, this imaging chip will achieve the best image resolution among
all commercial products for security/surveillance applications.

“Our continued collaboration with TowerJazz through the years to support NCIC
Labs at UCI has resulted in the success of a number of significant projects
such as the development of several imaging receivers at W-band and the design
of the first dual-band radar-on-chip covering 22-29GHz and 77-81GHz.
TowerJazz’s dedicated support and its advanced technology enabled us to
achieve silicon-based integrated circuits with comparable or better
performance when compared to more expensive III-V technologies,” said Prof.
Payam Heydari, Full Professor of Electrical Engineering and Computer Science,
University of California, Irvine. Besides the ISSCC 2013 presentation, this
chip has been showcased as part of several invited talks including a keynote
speech to the IEEE Global Conference on Signal and Information Processing
(GlobalSIP 2013): http://www.ieeeglobalsip.org/sym/13/mmwis.

“The advanced circuit demonstrations by the Heydari group at UCI continue to
impress. UCI’s results stem from very clever design architectures and highly
optimized circuit block designs. These building blocks have methodically
evolved over the span of our tight collaboration, and harness our best process
and manufacturing technologies,” said Dr. David Howard, Executive Director and
Fellow at TowerJazz.

About Nanoscale Communication Integrated Circuits (NCIC) Labs at UCI
Nanoscale Communication Integrated Circuits (NCIC) Labs is one of the foremost
research labs in the area of high frequency integrated circuits. Located at
the University of California, Irvine, the NCIC Labs have the infrastructure
for the measurement of integrated circuits for frequencies up to 500 GHz.
Since its start in 2002, twenty graduate students have graduated from the
labs, and eleven Ph.D. student researchers are currently carrying out
research.

About TowerJazz
Tower Semiconductor Ltd. (NASDAQ: TSEM)(TASE: TSEM), its fully owned U.S.
subsidiary Jazz Semiconductor, Inc. and its fully owned Japanese subsidiary
TowerJazz Japan, Ltd., operate collectively under the brand name TowerJazz,
the global specialty foundry leader. TowerJazz manufactures integrated
circuits, offering a broad range of customizable process technologies
including: SiGe, BiCMOS, Mixed-Signal/CMOS, RFCMOS, CMOS Image Sensor, Power
Management (BCD), and MEMS capabilities. TowerJazz also provides a world-class
design enablement platform that enables a quick and accurate design cycle. In
addition, TowerJazz provides (TOPS) Transfer Optimization and development
Process Services to IDMs and fabless companies that need to expand capacity.
TowerJazz offers multi-fab sourcing with two manufacturing facilities in
Israel, one in the U.S., and one in Japan. For more information, please visit
www.towerjazz.com.

Safe Harbor Regarding Forward-Looking Statements
This press release includes forward-looking statements, which are subject to
risks and uncertainties. Actual results may vary from those projected or
implied by such forward-looking statements. A complete discussion of risks and
uncertainties that may affect the accuracy of forward-looking statements
included in this press release or which may otherwise affect TowerJazz’s
business is included under the heading "Risk Factors" in Tower’s most recent
filings on Forms 20-F, F-3, F-4 and 6-K, as were filed with the Securities and
Exchange Commission (the “SEC”) and the Israel Securities Authority and Jazz’s
most recent filings on Forms 10-K and 10-Q, as were filed with the SEC,
respectively. Tower and Jazz do not intend to update, and expressly disclaim
any obligation to update, the information contained in this release.

Contact:

TowerJazz US Company/Media Contact:
Lauri Julian, +1-949-715-3049
lauri.julian@towerjazz.com
or
TowerJazz Investor Relations Contact:
Noit Levi, +972-4-604-7066
noit.levi@towerjazz.com
or
UCI Contact:
Prof. Payam Heydari, +1-949-824-9324
payam@uci.edu
 
Press spacebar to pause and continue. Press esc to stop.