Vanderbilt, GE Team to Achieve Deeper Understanding of Colon Cancer

  Vanderbilt, GE Team to Achieve Deeper Understanding of Colon Cancer

  *GE advanced cancer mapping technology to provide unprecedented studies of
    cancer cells
  *Could yield new insights into how colon cancer develops, progresses and
    can be suppressed

Business Wire

NISKAYUNA, N.Y. -- February 12, 2013

Vanderbilt University has partnered with GE Global Research, the technology
development arm for the General Electric Company (NYSE: GE), to better define
– at the cellular level – how colon tumors form and develop.

Pictured is an image of early stage colon cancer using GE's cancer mapping
technology which can disp ...

Pictured is an image of early stage colon cancer using GE's cancer mapping
technology which can display dozens of disease markers in a single tissue
sample. With a more detailed picture, researchers from Vanderbilt University
are hoping to make new discoveries about how colon cancer tumors form and
develop. (Photo: Business Wire)

The research, supported by a five-year, $3.75 million grant from the Office of
the Director of the National Institutes of Health (NIH), will test GE’s
revolutionary cancer mapping technology, an automated platform that can probe
and analyze up to 60 different disease markers, including proteins and
messenger RNAs, in a single tissue sample. The ability to study dozens of
markers at one time provides a more complete picture of what’s happening with
the cancer. Currently, a diagnosis of cancer and the decision of which therapy
to prescribe are based on the histology of the tumor and, in some cases, the
expression of just one or two disease markers inside a patient’s tumor.

The award is part of a new NIH-funded Single Cell Analysis Program that aims
to “understand what makes individual cells unique and to pave the way for
medical treatments that are based on disease mechanisms at the cellular
level.”

The GE-Vanderbilt project, led by GE scientists Michael Gerdes, Ph.D. and
Kashan Shaikh, Ph.D., and by Robert Coffey, M.D., Ingram Professor of Cancer
Research at Vanderbilt, will explore how intestinal stem cells of the colon
contribute to tumor formation and progression, and the signaling pathways
associated with the disease.

“With GE’s cancer mapping technology, we’re enabling cancer to be viewed in
ways it couldn’t previously be seen such as with the activation of different
signaling pathways in specific cells,” said Gerdes, lead scientist at GE
Global Research. “With unprecedented views, we hope will come unprecedented
insights that tell us more about how cancer forms, how it progresses, and most
importantly, how to defeat it.”

GE scientists have developed novel technology that allows a single tissue
section from a sample that is removed during surgery, to be imaged for
biosignatures including expression of dozens of proteins and nucleic acids
(RNA and DNA) without destroying the integrity of the sample.

“As we have learned, no two patient’s cancer is exactly the same. With colon
cancer, some patients exhibit a more aggressive form of the disease compared
to other patients,” said John Burczak, Advanced Technology Leader in Molecular
Imaging at GE Global Research. “We want to understand these subtleties, so
that one day therapies can even be specifically tailored for each patient.”

Gerdes added that the goal is to identify “the mechanisms that drive the
aggressive nature of the cancer, and the role that cancer stem cells play in
therapeutic resistance.”

A primary issue in cancer diagnosis today is the limited amount of molecular
information that is available about a particular cancer. With little
information, it’s difficult to determine more specific characteristics of
cancer that could reveal how fast or slow it may be growing. New breakthroughs
in molecular diagnostics are starting to change this paradigm.

GE’s cancer mapping technology will be tested with investigators at Vanderbilt
from the Epithelial Biology Center that Professor Coffey directs.

The Coffey lab recently reported the discovery of a new population of
relatively quiescent (inactive) intestinal stem cells. These cells express a
protein called Lrig1 that acts as a tumor suppressor. This discovery has
“given us an entrée to develop some very robust models of colon cancer,”
Coffey said.

The GE-Vanderbilt work is funded by NIH grant 1R01CA174377-01. Coffey’s
research is also supported by the National Cancer Institute (2P50CA095103 –
Molecular Imaging and Targeted Therapeutics of Stem Cell-Derived Colon
Cancer).

About GE Global Research

GE Global Research is the hub of technology development for all of GE's
businesses. Our scientists and engineers redefine what’s possible, drive
growth for our businesses, and find answers to some of the world’s toughest
problems.

We innovate 24 hours a day, with sites in Niskayuna, New York; San Ramon,
California; Bangalore, India; Shanghai, China; Munich, Germany; and Rio de
Janeiro, Brazil.

Visit GE Global Research on the web at www.ge.com/research. Connect with our
technologists at http://edisonsdesk.com and http://twitter.com/edisonsdesk.

About Vanderbilt University Medical Center

Vanderbilt University Medical Center is a major referral center for the
Southeast and nation. Through Vanderbilt University Hospital, the Monroe
Carell Jr. Children’s Hospital at Vanderbilt and other clinical facilities, it
provides several regional services, among them a Level 1 Trauma Center, a
comprehensive Regional Burn Center and a Level 4 Neonatal Intensive Care Unit.
VUMC encompasses the highly ranked Vanderbilt University School of Medicine,
Vanderbilt University School of Nursing and Ph.D. programs in the biomedical
sciences. Its cutting-edge research enterprise is nationally known for
translating scientific discoveries into advances in patient care. For more
information, see www.mc.vanderbilt.edu.

Photos/Multimedia Gallery Available:
http://www.businesswire.com/multimedia/home/20130212006191/en/

Multimedia
Available:http://www.businesswire.com/cgi-bin/mmg.cgi?eid=50561764&lang=en

Contact:

GE Media Contact:
Todd Alhart, 518-387-7914
todd.alhart@ge.com
 
Press spacebar to pause and continue. Press esc to stop.